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It has been shown that the so-called “wavelet phase” �or “time-scale”� synchronization of chaotic signals is
actually synchronization of smoothed functions with reduced chaotic fluctuations. This fact is based on the
representation of the wavelet transform with the Morlet wavelet as a solution of the Cauchy problem for a
simple diffusion equation with initial condition in a form of harmonic function modulated by a given signal.
The topological background of the resulting effect is discussed. It is argued that the wavelet phase synchroni-
zation provides information about the synchronization of an averaged motion described by bounding tori
instead of the fine-level classical chaotic phase synchronization.
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I. INTRODUCTION

Synchronization is one of general nonlinear phenomena
observed in a wide range of physical, chemical, and biologi-
cal processes �see, for example, the comprehensive review in
the book �1��. The adjustment of self-sustained periodic os-
cillators can vary from phase locking to complete synchrony.
The nontrivial example investigated first in �2� is the syn-
chronization of chaotic systems, which means that the abso-
lute value of the instantaneous phase ��1�t� and �2�t�� dif-
ference of two chaotic functions or time series f�t�1 and f2�t�
must be a bounded function of time: ��1�t�−�2�t���const
for any t.

However, the definition mentioned above reveals the im-
portant problem, which is still far from a complete solution:
how to introduce a phase of a chaotic oscillator. Conversely
to the case of harmonic or weak-nonlinear oscillations, there
are many possible approaches. The current state-of-the-art
and comparison of various methods can be found in the re-
view �3�. For systems with a simple attractor topology, one
can use conventional methods: a polar angle between veloc-
ity and displacement on a phase plane or the phase, which is
extracted from the result of the Hilbert �1� or wavelet �4�
transforms. This case is referred as “well-defined phase.”

However, if trajectories of two-dimensional attractor pro-
jection do not revolve around a unique origin, then the phase
is ill defined �see the discussion in �5��.

The authors of the article �6� have mentioned that in such
case, there exists a synchrony between phases ��a ,b� of the
complex wavelet transform w�a ,b�= �w�a ,b��exp�i��a ,b��,
where

w�a,b� = �
−�

+�

f�t�ei�0�t−b�/ae−��t − b�2/2a2� dt
�2�a

. �1�

Here the shift b plays the role of a time variable. The vari-
able a is called “scale” and connected with a local period �or
frequency� of the analyzed signal: for the case of simple
harmonic oscillation f�t�=exp�i�0t�, its wavelet transform

has a line of maximum corresponding to the scale a
=�0 /2��0.

In the paper �7�, the authors argue that this detection is an
example of some general phenomena named by them as
“time-scale synchronization.” The corresponding condition
for synchronization of chaotic systems with phases �1�a ,b�
and �2�a ,b� on a scale a0 is ��1�a0 ,b�−�2�a0 ,b���const;
i.e., the absolute value of the instantaneous phase difference
must be a bounded function of time for the given scale a.

The causes for the wavelet regularization of an ill-defined
phase are not revealed in the first presentations of this
method �6,7� nor in the further articles �e.g., �8,9��. On the
other hand, it has been shown �10� that there is no synchro-
nization if the used in Eq. �1� central frequency �0 is lower
than a certain critical value.

The main goal of this work is to analyze how the wavelet
transform disturbs the initial signal during the continuous
change in the central frequency in the sense of conservation/
lack of its chaoticity as well as a topological background of
the wavelet phase synchronization.

II. RESULTS

Note that the center frequency �0 of the standard Morlet
wavelet transform �11� determines both time and scale-space
resolution. In particular, it was demonstrated in �12,13� that
the Morlet wavelet transform provides a better detection tool
for isolated pulses and short-pulse trains when �0 is low and
resolves better long signals �which can be represented by
Fourier series� otherwise. For this reason, consider the cen-
tral frequency �0 as an independent variable.

To facilitate interpretation, let us define the frequency
variable � with respect to the scale a by the relation �
=�0 /�a. In these terms, the transform �1� can be rewritten as

w��,�0,b� = ei��b�
−�

+�

f�t�e−i��t e
−��t − b�2/4�0

2�1/2�2�2��

�4��0
2 1

2�2�2

dt .

�2�

It has a form of the harmonic oscillation with frequency �
modulated by the time-dependent complex amplitude*postnicov@gmail.com
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w�� ,�0 ,b�=u�� ,�0 ,b�exp�i��b�. The amplitude u is the in-
tegral in Eq. �2�, i.e., an integral transform with the diffusion
kernel. It is well known that such a kernel tends to the Dirac
delta function, if �0 tends to zero. Due to this property, Eq.
�2� takes the form

w��,0,b� = f�b� , �3�

if �0=0. Note that the analyzed function f�b� can be real as
well as complex.

Thus, the study of synchronization in the limit �0→0
does not differ from the standard conventional methods. For
example, one can use the complexification in the form of a

simple phase curve fc�t�= f�t�+ i ḟ�t� or via the Hilbert trans-
form fH�t�= f�t�+ iH�f�t��. As a result, the wavelet phase in
the limit �0=0 will coincide with the usual phase of a com-

plex number: the polar angle ��t�=arctan( ḟ�t� / f�t�) or ��t�
=arctan(H�f�t�� / f�t�).

Therefore, all properties mentioned in �6–9� are induced
by a finiteness of �0. From a mathematical point of view, let
� be a “time variable” and let b be a “space variable.” Then
Eq. �2� is a solution of the diffusion equation

�u

��
= �2�2�2�−1 �2u

�b2 , �4�

at the “instant” �=�0
2 with the diffusion coefficient

�2�2�2�−1. Therefore, the Morlet wavelet transform with
fixed � and variable �0 acts as a diffusion smoothing. Thus,
the problem is close enough to the classical problem of dif-
fusion image processing �14�. Here the transformed image is

the texture defined on the plane �b ,��: f�b�=exp�i��b�.
The dependence of the diffusion coefficient on � provides

the opportunity to adjust a smoothing rate to local frequency
of modulations that is a basic important property of wavelets.

From this “diffusional” point of view, it is clear that the
growth of �0 leads to the averaging, which eliminates high-
frequency fluctuations. But even these fluctuations provide a
divergence of phase trajectories for slightly different initial
values of a chaotic signal. The time uncertainty �0 /�� plays
a role of the corresponding quantitative measure for the av-
eraging window. The phase shifts within this interval are
indistinguishable, thus, one can detect some “synchroniza-
tion.”

As �0→�, the Morlet wavelet transform becomes the
Fourier integral transform, with infinite time domain and
zero-frequency/scale band. In this limit, two signals can be
compared in terms of the presence of certain frequencies in a
global sense, but neither instantaneous phase nor instanta-
neous frequency can be well defined; i.e., time-scale syn-
chronization is out of question.

As an example, consider from this point of view the
wavelet phase curves for the system of two coupled Rössler
oscillators

ẋ1,2 = − �1,2y − z1,2 + ��x2,1 − x1,2� ,

ẏ1,2 = − �1,2x1,2 + a0y1,2 − z1,2 + ��y2,1 − y1,2� ,

ż1,2 = p + z1,2�x1,2 − c� , �5�

with �1=0.98, �2=1.03, a0=0.22, p=0.1, c=8.5, and �
=0.05 studied in �6,7�.
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FIG. 1. Phase portraits of the Rössler oscillator dynamics in the wavelet space for various central frequencies.
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Take the complex combination f1,2�t�=x1,2�t�+ ẋ1,2 as an
initial value for Eq. �4� at the fixed inverse scale � corre-
sponding to the main line of maximum. Figure 1 presents
wavelet phase portraits for various �0 in the case of scale
a=5.25, corresponding to the time-scale synchronization de-
scribed in �6,7�. The case of �0=0 is a usual phase portrait of
the Rössler oscillator in the variable �x , ẋ�. With increasing
�0, the wavelet support has no more than zero length, high
harmonics are eliminated, and the phase portrait tends to
more regular shape, which is almost elliptic. Here a length of
radius-vector coincides with a modulus of the wavelet trans-
form and a polar angle is a wavelet phase. Naturally, the
motion along these “almost ellipses” leads to an increasingly
regular change in the latter. Thus, one can detect synchroni-
zation of this “almost-regular” motion of two coupled
oscillators.

III. DISCUSSION AND OUTLOOK

The considered phenomenon has also a topological expla-
nation based on the concept of bounding tori first introduced
in �15�. It has been shown there that chaotic attractors have
various scales of structure: a fine set of unstable orbits at a
finer level and a torus with holes, which encloses it. This
bounding torus is a semipenetrable surface defining the do-

main from which a phase trajectory cannot escape �see the
review with applications to various examples including
Rössler system, in �16��. In principle, one can determine
quantitative characteristics of these tori, say radii, as it has
been done in �17� for the size of domain bounding Lorenz
attractor. These radii could be associated with the boundaries
of uncertainty window for the analyzing wavelet.

From this topological point of view, the integral �1� means
that the functional product of the phase curves of trans-
formed solution and the wavelets with given scales and time
shifts. In other words, the result is nonzero in the points,
where both curves have a common tangent. For example,
certain phase curves for the Morlet wavelet are represented
in the Fig. 2. Obviously, small values of �0 correspond to the
very narrow ovals. In the limit �0→0, they simply tend to
radius vector, which pick up a current point of the original
phase curve. For larger central frequencies, the wavelet will
consist of several turns on a phase plane. Therefore, it can
touch an analyzed phase curve in several points, which be-
long to different orbits. That means that the resulting wavelet
phase curve, as pictured in Fig. 1, can be considered as a
mean line of the torus enveloping these orbits. If �0 is small
enough, there are orbits, which sometimes leave this torus.
However, for larger central frequencies, the spiral represent-
ing the Morlet wavelet on a phase plane fills almost a disk
�see Fig. 2�b��. Thus, it has some common tangents with all
possible orbits. The uncertainty range corresponding to this
threshold �0 determines the minimal size of the minimal
bounding torus for an analyzed dynamical system. Any fur-
ther growth of a central frequency does not lead to envelop-
ing new orbits but simply increase the number of tangent
points.

In the other words, below this threshold the continuous
wavelet transform with the Morlet wavelet detects pulses of
a width comparable to the oscillation period, i.e., individual
unstable orbits, and, since the signals are chaotic, the local-
ization of pulses in x1,2�t� fluctuates, and the phase difference
accumulates accordingly. With increasing �0, time resolution
degenerates and the wavelet length spans an increasing num-
ber of cycles. Consequently, phase difference fluctuations are
increasingly smoothed by diffusion averaging, i.e., the con-
sideration of individual orbits is replaced by tracing of tori
including a bundle of them.

As a result, time-scale synchronization is detected. Nev-
ertheless, it is not a pure chaotic synchronization in the clas-
sical sense �1� but a phase synchronization of averaged mo-
tions connected with another object, bounding tori,
belonging to a coarser topological level. Thus, the wavelet-
based method with a variable central frequency can be used
to determine the minimum smoothing window size required
to construct the bounding tori for a set of orbits from data.
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FIG. 2. The Morlet wavelet represented on a complex plane for
the scale a=1 and various central frequencies: �a� �0=0.01 �dotted
line�, �0=� �dashed line�, and �0=2� �solid line�; �b� �0=4�.
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